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SUMMARY

We present a class of �rst and second order in space and time relaxation schemes for the shallow water
(SW) equations. A new approach of incorporating the geometrical source term in the relaxation model
is also presented. The schemes are based on classical relaxation models combined with Runge–Kutta
time stepping mechanisms. Numerical results are presented for several benchmark test problems with
or without the source term present. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the well known one-dimensional shallow water (SW) system, with a geometrical
source term (the bottom topography) added, written in di�erential conservation law form as
a single vector equation

Ut + F(U)x=S(U) (1)

with

U=

[
h

hu

]
; F(U)=

[
hu

hu2 + g
2h
2

]
; S(U)=

[
0

−ghZ ′

]

System (1) describes the �ow at time t¿0 at point x∈R, where h(x; t)¿0 is the total water
height above the bottom, u(x; t) is the average horizontal velocity, Z(x) is the bottom height
function (see Figure 1) and g the gravitational acceleration.
The SW equations (1) are a hyperbolic system with a source term, due to the topography of

the bottom, with unknown quantities h; u. In the homogeneous case, the system is equivalent to
that of isentropic Euler system. However due to the presence of the source term the properties
of the system change substantially. The above system is quite simple in the sense that only
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Figure 1. Shallow �ow.

the topography of the bottom in taken into account, but other terms could be also added in
order to include e�ects such as friction on the bottom and on the surface as well as variations
of the channel width.
A wide variety of physical phenomena are governed by the SW equations. An important

class of problems of practical interest involve water �ows, including tidal �ows in estuary and
coastal water regions, bore wave propagation, �ood waves in rivers, surges and dam-break
modelling among others. The inclusion of source terms, e.g. those terms relevant to bottom
topography is often necessary to permit the modelling of such realistic problems.
In recent years many methods were proposed for the numerical approximation of solutions

of hyperbolic conservations laws with source terms. The main di�culty being here, the numer-
ical treatment of the source terms. Finite volume methods are widely used, and in particular
the well balanced schemes introduced by Greenberg and LeRoux, [1], Gosse and LeRoux [2]
and recently Gosse [3, 4] extended the idea for hyperbolic systems of balance laws and in SW
equations as in Reference [5]. Another approach is the Godunov type schemes presented in
References [6, 7] and the approach, which does not modify the Godunov solver, but approxi-
mates the source term in an upwind fashion using local characteristic decomposition, that was
introduced in References [8–10]. The application of central-upwind schemes to shallow water
systems with source terms has also been presented in Reference [11]. The most important
property of all these schemes is that they are designed in order to preserve steady states, as
accurately as possible, one of the main characteristics of the continuous model.
Another class of schemes were introduced in Reference [12]. These schemes are based

on the kinetic interpretation of the system. An entropy satisfying kinetic scheme which also
preserves the steady states in presented in Reference [13].
In this work we consider �nite di�erence relaxation schemes for (1). This class of relaxation

schemes was �rst introduced in Reference [14] and subsequently have been recently widely
applied and studied, see for example [15–21]. Recently in Reference [22] the connection
between a simple relaxation scheme of the type proposed in Reference [14] and a class of
approximate Riemann solvers has been explored.
The relaxation scheme that includes a source term was used in Reference [23] for �ows

in open channel networks by solving the Saint Venant equations. An analysis of a class
of relaxation schemes for hyperbolic conservation laws with sti� source terms is presented
in Reference [24]. In this work, we utilize the classical relaxation type of schemes, with
a novel treatment of the source term, which combine �nite volume shock capturing spatial
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discretizations that are Riemann solver free, and a Runge–Kutta method that provides the time
stepping mechanisms. The proposed schemes combine simplicity and high e�ciency. Their
performance in various test problems shows that they can provide a reliable alternative for
shallow water wave computations. A non standard relaxation model is used in computations
of steady state regimes with very promising results.
This paper is organized as follows: The relaxation systems for two di�erent treatments of

the source term for the SW equations are introduced in Section 2. The semi-discrete �rst and
second order schemes are presented in Section 3. Section 4 is devoted in the presentation of
the fully discrete schemes. Finally, in Section 5 a series of experiments displaying the features
of the methods are presented.

2. RELAXATION SYSTEMS FOR THE SW EQUATIONS

Relaxation systems for the SW equations are motivated by the relaxation system of [14] for
the 1-D scalar conservation laws. Indeed, if we consider the classical 1-D conservation law

ut + f(u)x =0; x∈R; t¿0
u(x; 0) = u0(x); x∈R

(2)

then the relaxation system of Reference [14] reads as follows:

ut + vx =0

vt + c2ux =−1
�
(v− f(u))

(3)

If the subcharateristic condition: |f′(u)|¡c holds true then in the relaxation limit �→ 0 we
recover (2).
Following this previous motivation we write a relaxation system for the SW equations

replacing the conservation law (1) by a larger system. Indeed we write, with q= hu,

ht + vx =0 (4a)

qt + wx =−ghZ ′ (4b)

vt + c21hx =−1
�
(v− q) (4c)

wt + c22qx =−1
�

(
w −

(
q2

h
+
g
2
h2
))

(4d)

by setting now

u=

[
h

q

]
; v=

[
v

w

]
(5)
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system (4) can be rewritten as

ut + vx = S(u)

vt +C2ux =−1
�
(v − F(u))

(6)

where now u; v∈R2 and C2 ∈R2×2 is a positive matrix. We assume without loss of generality
that C has positive eigenvalues cj¿0 for j=1; 2.
System (6) can now be further reformulated as[

u

v

]
t

+

[
0 I

C2 0

][
u

v

]
x

=


 S(u)

−1
�
(v − F(u))


 (7)

We also consider a variant of the above relaxation system which reads, see Reference [25]
for a derivation, as

ht + vx =0 (8a)

qt + wx =0 (8b)

vt + c21hx =−1
�
(v− q) (8c)

wt + c22qx =−1
�

(
w −

(
q2

h
+
g
2
h2
))

+
1
�

∫ x

gh(y)Z ′(y) dy (8d)

or written in vector form as[
u

v

]
t

+

[
0 I

C2 0

][
u

v

]
x

=

[
0

− 1
� (v − F(u))− 1

� S̃(u)

]
(9)

where

S̃(u)=




0

−
∫ x

gh(y)Z ′(y) dy




The original conservation law has now, in both formulations, been replaced by a linear hy-
perbolic system with a relaxation source term which rapidly drives v→ F(u) in the relaxation
limit � → 0. In some cases it can be shown analytically that solutions to (7) approach solu-
tions to the original conservation law. See for example References [26–30], for discussions
of this condition and convergence properties.
A general necessary condition for such convergence is that the subcharacteristic condition

is satis�ed. For systems (7), (9) we require that every eigenvalue � of F′(u) satis�es

|�|6cmax (10)

where cmax = maxj cj. By doing so we insure that the characteristic speeds of the hyperbolic
part of (7) or (9) are at least as large as the characteristic speeds of the original problem.
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Hence, by choosing the constants c1; c2 appropriately, so that the corresponding subcharacter-
istic conditions hold true, in the relaxation limit � → 0 we recover (1), for both relaxation
systems (7) and (9). Notice that in the case where Z ≡ 0 then the two schemes are identical.

3. SEMI-DISCRETE RELAXATION SCHEMES

We start �rst with the semi-discrete schemes for the relaxation systems (7) and (9). We
consider a classical �rst order upwind scheme and a second order MUSCL scheme. For
brevity we present the semi-discrete schemes for system (7).
To discretize the system of equations (7) we assume a uniform spaced grid with �x=xi+(1=2)

− xi−(1=2) and a uniform time step �t= t n+1 − t n; n=0; 1; 2; : : : : The approximate solution,
denoted as the discrete value uni , is the approximate cell average of the variable u in the cell
(xi+1=2; xi−1=2) at time t= t n. The approximate point value of u at x= xi+1=2 at time t= t n is
denoted by uni+1=2.

3.1. The upwind scheme

We start by considering the following one-step conservative system for the homogeneous case
(no source term present):

@
@t
ui +

1
�x

(vi+1=2 − vi−1=2) = 0
@
@t
vi +

1
�x

C2(ui+1=2 − ui−1=2) =−1
�
(vi − F(ui))

(11)

The linear hyperbolic part of the (11) has two Riemann invariants (characteristic speeds)

v ±Cu
associated with the characteristic �elds ±C, respectively. The �rst order upwind approximation
of v ±Cu reads

(v+Cu)i+1=2 = (v+Cu)i ; (v −Cu)i+1=2 = (v −Cu)i+1 (12)

Hence

ui+1=2 = 1
2(ui + ui+1)− 1

2C
−1(vi+1 − vi)

vi+1=2 = 1
2(vi + vi+1)− 1

2C(ui+1 − ui)
(13)

We can then construct the following �rst order upwind semi-discrete approximation of the
relaxation scheme (9):

@
@t
ui +

1
2�x

(vi+1 − vi−1)− 1
2�x

C(ui+1 − 2ui + ui−1) = 0

@
@t
vi +

1
2�x

C2(ui+1 − ui−1)− 1
2�x

C(vi+1 − 2vi + vi−1) =−1
�
(vi − F(ui))− 1

�
S̃(ui)

(14)
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where now

S̃(ui)=




0

−
∫ xi

gh(y)Z ′(y) dy




3.2. A MUSCL scheme

To construct a second order accurate in space scheme, the piecewise constant approximation
(12) is replaced with a MUSCL piecewise linear interpolation which, applied to the kth
component of v ±Cu, gives, respectively:

(v+ cku)i+(1=2) = (v+ cku)i + 1
2�xs

+
i

(v− cku)i+(1=2) = (v− cku)i+1 − 1
2�xs

−
i+1

(15)

where u; v are the kth (16k62 for the SW equations) components of v; u respectively, and
the slopes s± in the ith cell are de�ned by

s±i =
1
�x

(vi+1 ± ckui+1 − vi ∓ ckui)�(�±i ) (16)

with

�±i =
vi ± ckui − vi−1 ∓ ckui−1
vi+1 ± ckui+1 − vi ∓ ckui (17)

where � is a limiter function, as de�ned for example by Sweby [31], satisfying

06�(�)6minmod(2; 2�) (18)

There are several options on choosing a limiter function. Some of the most popular ones are,
the MinMod (MM) limiter

�(�)= max(0;min(1; �))

the VanLeer (VL) limiter

�(�)=
|�|+ �
1 + |�|

and the Monotonized Central (MC) limiter

�(�)= max(0;min((1 + �)=2; 2; 2�))

The last two limiters have been shown to exhibit sharper resolution of discontinuities, since
they do not reduce the slope as severely as MM near a discontinuity. It should be noted
here that (18) provides su�cient bounds on the �ux limiters for the TVD condition to be
satis�ed, but do not ensure second order accuracy (although the limiters used are second
order). Nevertheless, the results presented below prove strong improvement on accuracy when
compared with the �rst order scheme.
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Following from (15) we get

ui+1=2 =
1
2
(ui + ui+1)− 1

2ck
(vi+1 − vi) + �x4ck (s

+
i + s

−
i+1)

vi+1=2 =
1
2
(vi + vi+1)− ck

2
(ui+1 − ui) + �x4 (s

+
i − s−i+1)

(19)

Then the second order (in space) semi-discrete relaxation scheme is given componentwise as

@
@t
ui +

1
2�x

(vi+1 − vi−1)− ck
2�x

(ui+1 − 2ui + ui−1)

− 1
4
(s−i+1 − s−i + s+i−1 − s+i )=0

@
@t
vi +

c2k
2�x

(ui+1 − ui−1)− ck
2�x

(vi+1 − 2vi + vi−1)

+
ck
4
(s−i+1 − s−i − s+i−1 + s+i )= − 1

�
(vi − Fk(ui))− 1

�
S̃k(ui)

(20)

with S̃k ; Fk being the kth components of S̃;F, respectively. Notice that in the case the slope
s±=0 or �=0, the MUSCL scheme (20) reduces to the upwind scheme (14).

4. FULLY DISCRETE SCHEMES

In this section we present the time discretization of the semi-discrete relaxation schemes
applied to the SW equations. We will compare the two space discretizations, upwind and
MUSCL, applying an implicit Runge–Kutta method as the time marching mechanism to ad-
vance the solution by one time step �t. To simplify the presentation we assume that Z ≡ 0,
then

(A) Given un; vn apply a �nite volume method to update u; v over time �t by solving the
homogeneous linear hyperbolic system[

u

v

]
t

+

[
0 I

C2 0

][
u

v

]
x

=

[
0

0

]
(21)

and obtain new values u(1); v(1).
(B) Update u(1); v(1) to un+1; vn+1 by solving the equations

ut =0 (22)

vt =−1
�
(v − F(u)) (23)

over time �t.

A second order implicit Runge–Kutta (RK) splitting scheme was introduced in Reference
[14] and is utilized here for both source term formulations. The splitting treats, alternatively,
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702 A. I. DELIS AND T. KATSAOUNIS

the sti� source terms implicitly in two steps and the convection terms with two explicit steps.
Notice that, the space time discretizations are treated separately using what has become known
as the method of lines.
For the �rst source term application, corresponding to system (7), and temporarily dropping

the subscript indices, given {un; vn}, {un+1; vn+1} are computed by

un;1 = un (24a)

vn;1 = vn +
�t
�
(vn;1 − F(un;1)) (24b)

u(1) = un;1 −�tD+vn;1 + �tS(un;1) (24c)

v(1) = vn;1 −�tC2D+un;1 (24d)

un;2 = u(1) (24e)

vn;2 = v(1) − �t
�
(vn;2 − F(un;2))− 2�t

�
(vn;1 − F(un;1)) (24f)

u(2) = un;2 −�tD+vn;2 + �tS(un;2) (24g)

v(2) = vn;2 −�tC2D+un;2 (24h)

un+1 = 1
2(u

n + u(2)) (24i)

vn+1 = 1
2(v

n + v(2)) (24j)

where

D+wi=
1
�x

(wi+1=2 − wi−1=2)

Further in the case of system (9) with the source term present, we get

un;1 = un (25a)

vn;1 = vn +
�t
�
(vn;1 − F(un;1)) + �t

�
S̃(un;1) (25b)

u(1) = un;1 −�tD+vn;1 (25c)

v(1) = vn;1 −�tC2D+un;1 (25d)

un;2 = u(1) (25e)

vn;2 = v(1) − �t
�
(vn;2 − F(un;2))

−2�t
�
(vn;1 − F(un;1))− �t

�
S̃(un;2)− 2�t

�
S̃(un;1) (25f)
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u(2) = un;2 −�tD+vn;2 (25g)

v(2) = vn;2 −�tC2D+un;2 (25h)

un+1 = 1
2(u

n + u(2)) (25i)

vn+1 = 1
2(v

n + v(2)) (25j)

It is worth noting here that, using the above schemes neither linear algebraic equation nor
nonlinear source terms arise. In addition the �rst order relaxation scheme is stable under the
usual CFL condition,

max{c1; c2}�t�x61 (26)

while the second order MUSCL relaxation scheme is TVD (see References [14, 24, 20]) under
the additional restriction on CFL,

max{c1; c2}�t�x6
1
2

(27)

The time discretization in the limit when �→ 0 converges to the TVD Runge–Kutta schemes
is given in Reference [32].

5. NUMERICAL TESTS AND RESULTS

We present results of a series of numerical experiments illustrating the various features of
the schemes. For consistency in all the experiments reported here the time step �t was
computed according to the condition (27), but in practice higher values can also be used in
most calculations.
The choices of c1 and c2 in all the numerical tests are based on rough estimates of the two

eigenvalues (u+
√
gh; u−√

gh) of the original SW equations. Thus, we take c1¿ sup |u+
√
gh|

and c2¿ sup |u−
√
gh|, which satisfy the subcharacteristic condition (10). Other choices can

be made, for example one can simply set c1 = c2 = max(sup |u+
√
gh|; sup |u−√

gh|), as long
as numerical stability is maintained. It should be noted here that larger c1; c2 values usually
add more numerical viscosity. The schemes presented here can be viewed as a whole class
of schemes depending on the parameters c1; c2.
The relaxation parameter � should be small with respect to the time step and space mesh

length, that is �t�� and �x��. Again here, � plays the role of viscosity coe�cient so more
numerical di�usion will be added for relatively larger values of �, see Reference [19] for a
discussion on this matter.

5.1. Dam break �ow

In order to check the validity and behaviour of the relaxation schemes we �rst consider a
non-stationary case, the dam break problem in a rectangular channel with �at bottom, Z =0.
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704 A. I. DELIS AND T. KATSAOUNIS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
4

5

6

7

8

9

10

h 
(m

)

x (m)

Figure 2. Dam-break �ow, h0=h1 = 0:5; �x=20 m, c1 = 5; c2 = 12,
(×) Upwind and (◦) MUSCL with MC limiter.

We computed the solution on a channel of length L=2000 m for time T =50 s and with
initial conditions:

u(x; 0) = 0

h(x; 0) =

{
h1 x61000

h0 x¿1000

with h1¿h0. This is the corresponding Riemann problem for the homogeneous problem. The
water depth ratio is given by h0=h1. The dam collapses at t=0 and the resulting �ow con-
sists of a shock wave (bore) travelling downstream and a rarefaction wave (depression wave)
travelling upstream. The upstream depth h1 was kept constant at 10m, while the downstream
depth h0 was di�erent for each problem. When the depth ratio is greater than 0.5, the �ow
throughout the channel remains subcritical. For depth ratios smaller than 0.5, the �ow down-
stream of the dam position is supercritical while remaining subcritical upstream. For very
small values of the ratio h0=h1 the �ow regime becomes strongly supercritical downstream
and the shock wave can be di�cult to capture. The analytical (exact) solutions for these
sample problems were calculated using Stoker’s [33] method and shown as a solid line in the
all the �gures. The values used were �=1:E − 4 and CFL=0:5.
The results presented in Figures 2–5 for the water height pro�le compare well with the

analytical solution. The discontinuities are correctly captured and the shock strength is pre-
dicted accurately without the use of a very �ne grid (as in Figure 3). The performance of the
MUSCL relaxing scheme is superior, as expected, compared to the upwind one, especially
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Figure 3. Dam-break �ow, h0=h1 = 0:5; �x=10 m, c1 = 5; c2 = 12,
(×) Upwind and (◦) MUSCL with MC limiter.
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Figure 4. Dam-break �ow, h0=h1 = 0:05; �x=20 m, c1 = 6; c2 = 16,
(×) Upwind and (◦) MUSCL with MC limiter.
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Figure 5. Dam-break �ow, h0=h1 = 0:005; �x=20 m, c1 = 12; c2 = 18,
(×) Upwind and (◦) MUSCL with MC limiter.

for the smallest depth ratio. The results compare very well to the solutions obtained by more
classical methods (such as approximate Riemann solvers and TVD methods), for the same
problem (see for example References [34, 35]).
In Figures 6 and 7 the results for the smaller depth ratios for the MUSCL relaxation scheme

presented in Figures 4 and 5 are compared with the classical second order in space explicit
MUSCL scheme (see Reference [34]) for the same computational parameters and limiter. The
results are similar especially for the shock calculation in Figure 6 while the classical MUSCL
scheme is proven slightly more di�usive on the head and tail of the rarefaction wave.

5.1.1. Dry bed problem. For the next test problem, we consider a dry bed on the downstream
of the dam (h0 = 0). For brevity results are presented only for the MUSCL relaxing scheme
and compared with the analytical solutions at time T =40 s in Figures 8–10. This is a
challenging numerical problem as a result of the singularity that occurs at the transition
point of the advancing front. The computed solution for h follows closely the analytical one,
the transition point between the wet and the dry zone is close to the exact one, but some
di�culties appear on the velocity. Indeed, as the solution is similar to a peak in this zone,
the TVD scheme becomes of order 1 and is di�usive. Nevertheless, the results are globally
accurate and totally non-oscillatory. We also verify numerically that the positivity of the water
height and discharge is preserved. From a practical perspective, the overall performance of the
MUSCL relaxing scheme is particular attractive because the solution remains stable, monotone
and highly accurate (at least away from the wet=dry interface) without requiring special front
tracking techniques or deforming grids.
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

h 
(m

)

x (m)

Figure 6. Dam-break �ow, h0=h1 = 0:05, (×) MUSCL (classical) with MC limiter,
(◦) MUSCL (relaxation) with MC limiter.

5.2. Flow at rest

We consider system (1) with initial conditions

u(x; 0) = 0; ∀x∈R
h(x; 0) + Z(x) =H; ∀x∈R

then clearly

u(x; t) = 0; ∀x∈R; t¿0
h(x; t) + Z(x) =H; ∀x∈R; t¿0

is a solution to (1).
We test our scheme to this steady state �ow where the bathymetry is non-trivial and is

given by

Z(x)=

{
0:2− 0:05(x − 10)2; 86x612

0; otherwise
(28)

in channel of length L=25m and H =2m; �=1:E−5; c1 = 4; c2 = 4:5 and CFL=0:5. Figures
11 and 12 display the �nal water level and the �nal unit discharge values respectively, for
the MUSCL schemes (24) and (25) at time T =200 s and mesh size �x=0:125m and with

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:695–719



708 A. I. DELIS AND T. KATSAOUNIS

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

h 
(m

)

x (m)

Figure 7. Dam-break �ow, h0=h1 = 0:005, (×) MUSCL (classical) with MC limiter,
(◦) MUSCL (relaxation) with MC limiter.
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Figure 8. Dry bed dam-break �ow (h); �x=10 m, c1 = 18; c2 = 16, (◦) MUSCL with MM limiter.
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Figure 9. Dry bed dam-break �ow (q); �x=10 m, c1 = 18; c2 = 16, (◦) MUSCL with MM limiter.
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Figure 10. Dry bed dam-break �ow (u); �x=10 m, c1 = 18; c2 = 16, (◦) MUSCL with MM limiter.
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Figure 11. Flow at rest (water height): (+) scheme (24) and (◦) scheme (25).

the same computational parameters used. In all the �gures the theoretical (exact) solution is
represented with a solid line.
We notice the di�erence between the two schemes (based on the treatment of the source

term), especially the discharge for scheme (24) converges to an oscillatory solution as one
can see with closer inspection in Figure 13, while the result for (25) was almost to machine
accuracy away from the hump.
The variance of the values of the water level as well as of the discharge from the steady

states for scheme (25) (as � → 0) are of O(�) as can be seen in Table I. For consistency
we have used the same CFL number for the results presented in Table I, up to the value of
� where �t �= O(�). We should stress here that, as noted before, for the relaxation schemes
presented �t��.
In Figures 14 and 15 we compare scheme (25) with Roe’s scheme with upwinding of

the source terms (see References [8, 10]). Away from the hump both schemes give indistin-
guishable solution (close to machine accuracy) while Roe’s scheme performs slightly better
(as can be seen in the magni�ed view in Figure 15) on the hump region, this is due to the
discritizations performed, designed to preserve such steady states.

5.3. Steady �ow over a hump

In this benchmark test case we study the convergence towards steady �ow over a hump, (28)
and the same length as before. Depending on the initial and boundary conditions, the �ow
may be subcritical, transcritical with a shock or without a shock. Computational parameters
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Figure 12. Flow at rest (discharge): (+) scheme (24) and (◦) scheme (25).
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Figure 13. Flow at rest: Magni�ed view of Figure 12 for the discharge.
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Table I. ‘1 errors for the water at rest problem (CFL=0:5).

� ‘1 error for h Rate(h) ‘1 error for q Rate(q)

1:E − 1 3:212E − 3 — 2:327E − 2 —
8:E − 2 2:271E − 3 1:551 1:921E − 2 0.860
6:E − 2 1:425E − 3 1:619 1:478E − 2 0.908
4:E − 2 7:383E − 4 1:628 1:000E − 2 0.954
2:E − 2 2:646E − 4 1:480 5:154E − 3 0.962
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Figure 14. Flow at rest: (◦) scheme (25) and (×) Roe scheme (with source term upwinding).

common for all three cases are: CFL=0:5; �x=0:125 m; T =200 s. The initial conditions
in all cases are taken to be

u(x; 0) = 0

h(x; 0) + Z(x) =H0

where H0 is the constant water level downstream provided by the boundary condition. For
brevity results are presented only for the MUSCL scheme (25), with the improved inclusion
of the source term, and using the MC limiter. In each test case the results are compared with
the exact solution which is presented as a solid line.

5.3.1. Subcritical �ow. We impose an upstream boundary condition for the discharge
q=4:42 m2=s and a downstream boundary condition for the water level H0 = 2 m. The com-
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Figure 15. Flow at rest: (◦) scheme (25) and (×) Roe scheme (with source term upwinding).

putational parameters were �=1:E− 5, c1 = 4 and c2 = 7. The �nal water level as well as the
discharge are displayed in Figures 16 and 17.

5.3.2. Transcritical �ow without shock. In this case we impose an upstream boundary condi-
tion for the discharge q=1:53m2=s and a downstream boundary condition for the water level
H0 = 0:66 m only in the case where the �ow is subcritical. If the �ow becomes supercritical
downstream, no condition for the water level is imposed. The computational parameters were
�=1:E − 5, c1 = 5 and c2 = 6. The �nal water level as well as the discharge are displayed in
Figures 18 and 19.

5.3.3. Transcritical �ow with shock. In this test case the upstream boundary condition for
the discharge is q=0:18 m2=s and the downstream boundary condition for the water level is
H0 = 0:33 m. The computational parameters were �=1:E − 6 and c1 = c2 = 5. The �nal water
level as well as the discharge are displayed in Figures 20 and 21, where they compared with
the analytical solutions and that of the Roe scheme with source term upwinding.

5.3.4. Drain on a non-�at bottom. This is a di�cult problem for all numerical methods,
since it involves the calculation of dry areas and it has been proposed in Reference [6]. With
the same topography as before, we consider the channel draining o� and we assume that the
upstream boundary condition is a ‘mirror state’-type (re�ective) and the downstream boundary
condition is that of a dry bed. The initial condition is set to h + Z =0:5 m and q=0 m3=s.
The solution for this test case (t= +∞) is a state at rest, on the left part of the hump with
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Figure 16. Subcritical �ow over a hump (h).
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Figure 17. Subcritical �ow over a hump (q).
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Figure 18. Transcritical �ow over a hump (h).
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Figure 19. Transcritical �ow over a hump (q).
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Figure 20. Transcritical �ow with shock: (◦) scheme (25) and (×)
Roe scheme (with source term upwinding).

h+ Z =0:2 m with q=0 m3=s and a dry state (i.e. h=0 and q=0 m3=s) on the right of the
hump.
The depth and discharge pro�les were calculated at several times t=10; 20; 100;

1000 s with a 250 uniform grid and CFL=0:5 and presented in Figures 22 and 23. The
computational parameters were �=1:E − 6 and c1 = c2 = 3:5. The proposed model converges
to the expected steady state solution, as it can be seen in Figures 22 and 23. It is important to
notice here that the results were obtained without any modi�cation of the method to overcome
the dry area problem of zero depth and discharge and compare well with those presented in
References [6, 36].
In all the four test problems presented above the results compare well the analytical solutions

and with already published solutions (see for example References [6, 9]), converging to the
correct steady state solutions without any unwanted oscillations.

6. CONCLUSIONS

In the present work relaxation schemes have been studied in order to compute shallow water
�ows with and without a topography source term present. The main feature of the schemes
is their simplicity and robustness. Finite volume shock capturing spatial discretizations, that
are Riemann solver free, have been used providing accurate shock resolution. A new way
to incorporate the topography source term was applied with the relaxation model and only
small errors were introduced while preserving steady states. The benchmark tests have shown
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Figure 21. Transcritical �ow with shock: (◦) scheme (25) and (×)
Roe scheme (with source term upwinding).
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Figure 22. Drain on a non-�at bottom (h).
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Figure 23. Drain on a non-�at bottom (q).

that the schemes provide accurate solutions in good agreement with well known analytical
solutions. The results also demonstrate that relaxation schemes are accurate, simple, e�cient
and robust and can be of practical consideration when solving shallow water �ow problems
involving bed slope source terms. In addition, work to extend the relaxation schemes to the
two dimensional SW equations is underway.
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